Lecture 1:
Historical Overview, Statistical Paradigm, Classical Mechanics

A.G. Petukhov, PHYS 743

August 23, 2017
Historical Overview

- According to ancient Greek philosophers, all matter consists of discrete particles that are permanently moving and interacting. Gas of particles is the simplest object to study. Until the 20th century, this molecular-kinetic theory had not been directly confirmed in spite of its success in chemistry.
Historical Overview

- According to ancient greek philosophers all matter consists of discrete particles that are permanently moving and interacting. Gas of particles is the simplest object to study. Until 20th century this \textit{molecular-kinetic theory} had not been directly confirmed in spite of it’s success in chemistry.

- In 1905-1906 Einstein and Smoluchovski developed theory of Brownian motion. The theory was experimentally verified in 1908 by a french physical chemist Jean Perrin who was able to estimate the Avogadro number N_A with very high accuracy.
Historical Overview

- According to ancient greek philosophers all matter consists of discrete particles that are permanently moving and interacting. Gas of particles is the simplest object to study. Until 20th century this molecular-kinetic theory had not been directly confirmed in spite of it’s success in chemistry.

- In 1905-1906 Einstein and Smoluchovski developed theory of Brownian motion. The theory was experimentally verified in 1908 by a french physical chemist Jean Perrin who was able to estimate the Avogadro number N_A with very high accuracy.

- Daniel Bernoulli in eighteen century was the first who applied molecular-kinetic hypothesis to calculate the pressure of an ideal gas and deduct the empirical Boyle’s law $pV = const$.

Historical Overview

- According to ancient Greek philosophers all matter consists of discrete particles that are permanently moving and interacting. Gas of particles is the simplest object to study. Until 20th century this molecular-kinetic theory had not been directly confirmed in spite of its success in chemistry.

- In 1905-1906 Einstein and Smoluchovski developed theory of Brownian motion. The theory was experimentally verified in 1908 by a French physical chemist Jean Perrin who was able to estimate the Avogadro number N_A with very high accuracy.

- Daniel Bernoulli in eighteenth century was the first who applied molecular-kinetic hypothesis to calculate the pressure of an ideal gas and deduct the empirical Boyle’s law $pV = const$.

- In the 19th century Clausius introduced the concept of the mean free path of molecules in gases. He also stated that heat is the kinetic energy of molecules. In 1859 Maxwell applied molecular hypothesis to calculate the distribution of gas molecules over their velocities.
Historical Overview, cont’d

- In 1868 -1871 Ludwig Boltzmann generalized Maxwell’s distribution to the case of a gas in an external field and proved the famous equipartition theorem. He also derived his celebrated kinetic equation.
Historical Overview, cont’d

- In 1868 -1871 Ludwig Boltzmann generalized Maxwell’s distribution to the case of a gas in an external field and proved the famous equipartition theorem. He also derived his celebrated kinetic equation.

- In the first half of the 19th century the phenomenological thermodynamics was developed. The equivalence of heat and work (the 1st law of thermodynamics) was stated by Mayer, Joule and Helmholtz. Then Carnot, Clausius and Kelvin formulated the 2nd law of thermodynamics (the entropy of an isolated system never decreases).
Historical Overview, cont’d

- In 1868 -1871 Ludwig Boltzmann generalized Maxwell’s distribution to the case of a gas in an external field and proved the famous equipartition theorem. He also derived his celebrated kinetic equation.

- In the first half of the 19th century the phenomenological thermodynamics was developed. The equivalence of heat and work (the 1st law of thermodynamics) was stated by Mayer, Joule and Helmholtz. Then Carnot, Clausius and Kelvin formulated the 2nd law of thermodynamics (the entropy of and isolated system never decreases).

- The statistical mechanics in its modern form was formulated as a complete theory by an American physicist Josiah Willard Gibbs in 1875-1902. The Gibbs formulation is the summit of the statistical physics. It provides rational justification of thermodynamics and requires only a minor modification to describe quantum statistics.
In order to understand the magnitude of Gibbs contribution we quote Robert Millikan who said that “...[Gibbs] did for statistical mechanics and for thermodynamics what Laplace did for celestial mechanics and Maxwell did for electrodynamics, namely, made his field a well-nigh finished theoretical structure.”
In order to understand the magnitude of Gibbs contribution we quote Robert Millikan who said that “...[Gibbs] did for statistical mechanics and for thermodynamics what Laplace did for celestial mechanics and Maxwell did for electrodynamics, namely, made his field a well-nigh finished theoretical structure.”

In 1900 Max Planck formulated and presented his theory of blacks-body radiation based on a revolutionary quantum hypothesis. This theory started a new era of quantum physics in general and, in particular, the era of quantum statistical mechanics.
Statistical Paradigm

- Statistical physics (mechanics) deals with the special laws that govern behavior and properties of macroscopic bodies, i.e. the bodies containing very large, \(\sim 10^{23} \), number of particles (atoms or molecules).
Statistical Paradigm

- Statistical physics (mechanics) deals with the special laws that govern behavior and properties of macroscopic bodies, i.e., the bodies containing very large, $\sim 10^{23}$, number of particles (atoms or molecules).

- Any attempt to describe macroscopic systems using just equation of motions (classical or quantum) will fail. It is impossible even to write down the equation of motion for a system with $s \sim 10^{23}$ degrees of freedom. Let alone, to solve and analyze these equations.
Statistical Paradigm

- Statistical physics (mechanics) deals with the special laws that govern behavior and properties of macroscopic bodies, i.e. the bodies containing very large, $\sim 10^{23}$, number of particles (atoms or molecules).

- Any attempt to describe macroscopic systems using just equation of motions (classical or quantum) will fail. It is impossible even to write down the equation of motion for a system with $s \sim 10^{23}$ degrees of freedom. Let alone, to solve and analyze these equations.

- In spite of this seemingly insurmountable obstacles the macroscopic systems are tractable (the goal of this course is to prove it).
Statistical Paradigm

- Statistical physics (mechanics) deals with the special laws that govern behavior and properties of macroscopic bodies, i.e. the bodies containing very large, \(\sim 10^{23} \), number of particles (atoms or molecules).

- Any attempt to describe macroscopic systems using just equation of motions (classical or quantum) will fail. It is impossible even to write down the equation of motion for a system with \(s \sim 10^{23} \) degrees of freedom. Let alone, to solve and analyze these equations.

- In spite of this seemingly insurmountable obstacles the macroscopic systems are tractable (the goal of this course is to prove it).

- We need a new paradigm, recognizing that statistical laws resulting from the very presence of the huge number of particles cannot be in any way reduced to purely mechanical laws.
Statistical Paradigm

The systems of many ($\sim 10^{23}$) degrees of freedom are described by the laws of different kind. These laws become invalid for small systems. For instance, the equation of state of an ideal gas:
Statistical Paradigm

The systems of many \((\sim 10^{23})\) degrees of freedom are described by the laws of different kind. These laws become invalid for small systems. For instance, the equation of state of an ideal gas:

\[
pV = RT
\]
Statistical Paradigm

The systems of many ($\sim 10^{23}$) degrees of freedom are described by the laws of different kind. These laws become invalid for small systems. For instance, the equation of state of an ideal gas:

$$pV = RT$$

is quite certain and can be checked experimentally with high accuracy. However this equation relates different type of variables (not mechanical ones!), so-called *thermodynamic variables* (or integral variables, defined by all particles).
The systems of many ($\sim 10^{23}$) degrees of freedom are described by the laws of different kind. These laws become invalid for small systems. For instance, the equation of state of an ideal gas:

$$pV = RT$$

is quite certain and can be checked experimentally with high accuracy. However this equation relates different type of variables (not mechanical ones!), so-called *thermodynamic variables* (or integral variables, defined by all particles).

The goal of the statistical mechanics is to define these variables and to justify the laws of thermodynamics
Description of Motion in Classical mechanics

We will start with the classical statistics, i.e. consider a mechanical system with \(s \) degrees of freedom subject to the Newton’s law.
Description of Motion in Classical mechanics

We will start with the classical statistics, i.e. consider a mechanical system with s degrees of freedom subject to the Newton’s law. The positions of particles in the system will be described by s coordinates

$$q_1, q_2, \ldots, q_s$$
Description of Motion in Classical mechanics

We will start with the classical statistics, i.e. consider a mechanical system with s degrees of freedom subject to the Newton’s law. The positions of particles in the system will be described by s coordinates

$$q_1, q_2, \ldots, q_s$$

The state of the system at a given instant will be defined by these coordinates and by s velocities:

$$\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s,$$
Description of Motion in Classical mechanics

We will start with the classical statistics, i.e. consider a mechanical system with s degrees of freedom subject to the Newton's law. The positions of particles in the system will be described by s coordinates

$$q_1, q_2, \ldots, q_s$$

The state of the system at a given instant will be defined by these coordinates and by s velocities:

$$\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s,$$

The number s depends on a particular system, e.g. for a system of N particles in 3D space $s = 3N$.

For any mechanical system a definite function:

$$L = L(q_1, q_2, \ldots, q_s, \dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s, t) \equiv L(q, \dot{q}, t)$$

called Lagrangian can be introduced.
Description of Motion in Classical mechanics

We will start with the classical statistics, i.e. consider a mechanical system with s degrees of freedom subject to the Newton’s law. The positions of particles in the system will be described by s coordinates:

$$q_1, q_2, \ldots, q_s$$

The state of the system at a given instant will be defined by these coordinates and by s velocities:

$$\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s,$$

The number s depends on a particular system, e.g. for a system of N particles in 3D space $s = 3N$. For any mechanical system a definite function:

$$L = L(q_1, q_2, \ldots, q_s, \dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s, t) \equiv L(q, \dot{q}, t)$$

called Lagrangian can be introduced.
Least Action Principle

The equations of motion can be obtained from the least action principle stating that the integral (action)

\[
S = \int_{q_1(t_1)}^{q_2(t_2)} L(q, \dot{q}, t) dt = \min
\]

takes the least possible value.
Least Action Principle

The equations of motion can be obtained from the least action principle stating that the integral (action)

$$ S = \int_{q_1(t_1)}^{q_2(t_2)} L(q, \dot{q}, t) dt = \min $$

takes the least possible value. Minimization of S yields s equations of motion (Lagrange’s equations):

$$ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 \quad i = 1, \ldots, s \quad (1) $$

These are s second order differential equations connecting \ddot{q}, \dot{q}, and q.
Least Action Principle

The equations of motion can be obtained from the least action principle stating that the integral (action)

\[S = \int_{q_1(t_1)}^{q_2(t_2)} L(q, \dot{q}, t) dt = \min \]

takes the least possible value. Minimization of \(S \) yields \(s \) equations of motion (Lagrange’s equations):

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 \quad i = 1, \ldots, s \quad (1) \]

These are \(s \) second order differential equations connecting \(\ddot{q}, \dot{q} \), and \(q \). For conservative systems

\[L(q, \dot{q}, t) = T(q, \dot{q}) - U(q), \]

where \(T = \sum_i m_i v_i^2 / 2 \) is the total kinetic energy and \(U(q) \) is the potential energy.
Hamilton’s (Canonical) Equations

In statistical mechanics another form of equations of motion is used (Hamilton’s equations). Introducing generalized momenta:

\[p_i = \left(\frac{\partial L}{\partial \dot{q}_i} \right) \]

(2)
Hamilton’s (Canonical) Equations

In statistical mechanics another form of equations of motion is used (Hamilton’s equations). Introducing generalized momenta:

\[p_i = \left(\frac{\partial L}{\partial \dot{q}_i} \right) \] \hspace{1cm} (2)

and Hamiltonian function (using Legendre transformation):

\[H(q, p, t) = \sum_{i=1}^{s} p_i \dot{q}_i - L(q, \dot{q}, t) \] \hspace{1cm} (3)
Hamilton’s (Canonical) Equations

In statistical mechanics another form of equations of motion is used (Hamilton’s equations). Introducing generalized momenta:

\[p_i = \left(\frac{\partial L}{\partial \dot{q}_i} \right) \]

(2)

and Hamiltonian function (using Legendre transformation):

\[H(q, p, t) = \sum_{i=1}^{s} p_i \dot{q}_i - L(q, \dot{q}, t) \]

(3)

we obtain a set of 2s first-order differential equations (Hamilton’s equations):

\[\dot{p}_i = -\frac{\partial H}{\partial q_i} \]

(4)

\[\dot{q}_i = \frac{\partial H}{\partial p_i} \]

(5)
Conservations Laws (Integrals of Motion)

A general solution of a system of $2s$ first order differential equations depends on $2s$ arbitrary constants. For a conservative, isolated (closed) system the system of equations of motion does not contain the time t (independent variable) explicitly (autonomous system). It means that the equations of motion are time-invariant, i.e. the origin of time t_0 is arbitrary. Since we can always eliminate t_0 there are only $2s - 1$ combinations of q_i and p_i that remain constant. These constants are called integrals of motion. There are seven integrals of motion that are of the most significance for statistical mechanics:
Conservations Laws (Integrals of Motion)

A general solution of a system of $2s$ first order differential equations depends on $2s$ arbitrary constants. For a conservative, isolated (closed) system the system of equations of motion does not contain the time t (independent variable) explicitly (autonomous system). It means that the equations of motion are time-invariant, i.e. the origin of time t_0 is arbitrary. Since we can always eliminate t_0 there are only $2s - 1$ combinations of q_i and p_i that remain constant. These constants are called integrals of motion. There are seven integrals of motion that are of the most significance for statistical mechanics:

- Energy E resulting from homogeneity of time
Conservations Laws (Integrals of Motion)

A general solution of a system of $2s$ first order differential equations depends on $2s$ arbitrary constants. For a conservative, isolated (closed) system the system of equations of motion does not contain the time t (independent variable) explicitly (autonomous system). It means that the equations of motion are time-invariant, i.e. the origin of time t_0 is arbitrary. Since we can always eliminate t_0 there are only $2s - 1$ combinations of q_i and p_i that remain constant. These constants are called integrals of motion. There are seven integrals of motion that are of the most significance for statistical mechanics:

- Energy E resulting from homogeneity of time
- Three projections of Linear momentum \vec{P} resulting from homogeneity of space
Conservations Laws (Integrals of Motion)

A general solution of a system of $2s$ first order differential equations depends on $2s$ arbitrary constants. For a conservative, isolated (closed) system the system of equations of motion does not contain the time t (independent variable) explicitly (autonomous system). It means that the equations of motion are time-invariant, i.e. the origin of time t_0 is arbitrary. Since we can always eliminate t_0 there are only $2s - 1$ combinations of q_i and p_i that remain constant. These constants are called integrals of motion. There are seven integrals of motion that are of the most significance for statistical mechanics:

- Energy E resulting from homogeneity of time
- Three projections of Linear momentum \vec{P} resulting from homogeneity of space
- Three projections of Angular Momentum \vec{M} resulting from isotropy of space
Conservation of Energy

Conservation of energy can be proven from time independence of the Hamiltonian at the Hamilton’s equations (4). Indeed, for any $H(p, q, t)$:

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} + \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} \dot{p}_i \right)$$

Using time-independence, i.e. $\frac{\partial H}{\partial t} = 0$ and Hamilton’s equations (4) we obtain:

$$\frac{dH}{dt} = \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} \dot{p}_i \right) = 0$$

Thus $H(p, q) = E$ where E is the constant of motion identified as the energy of the system.
Conservation of Energy

Conservation of energy can be proven from time independence of the Hamiltonian at the Hamilton’s equations (4). Indeed, for any $H(p, q, t)$:

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} + \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} \dot{p}_i \right)$$

Using time-independence, i.e. $\frac{\partial H}{\partial t} = 0$ and Hamilton’s equations (4) we obtain:

$$\frac{dH}{dt} = \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = 0$$
Conservation of Energy

Conservation of energy can be proven from time independence of the Hamiltonian at the Hamilton’s equations (4). Indeed, for any $H(p, q, t)$:

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} + \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} \dot{p}_i \right)$$

Using time-independence, i.e. $\frac{\partial H}{\partial t} = 0$ and Hamilton’s equations (4) we obtain:

$$\frac{dH}{dt} = \sum_{i=1}^{s} \left(\frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = 0$$

Thus

$$H(p, q) = E$$

where E is the constant of motion identified as the energy of the system.