PHYS 743, Homework 3, Fall 2017
Due Monday, October 16, 5 pm MST

1. Use the result of problem 2 (Homework 2):

 (a) To obtain the equation of state \(p = p(V, T) \) for an ideal gas of \(N \) monoatomic molecules using the procedure outlined in slides 2, 3 of Lecture 7 (Eqs. (2), (3) and below)

 (b) To calculate energy \(E \) and entropy \(S \) as functions of volume and temperature \(V, T \)

 (c) calculate thermodynamic potentials \(W, F \) and \(\Phi \) as functions of their natural variables

2. For an ideal classical gas of \(N \) monoatomic molecules derive

 (a) The relation between \(T \) and \(V \) at the adiabatic expansion/compression.

 (b) repeat 2a to find relation between \(p \) and \(V \) at the adiabatic expansion/compression.

 (c) Use Mathematica to plot \(p(V) \) (\(p-V \) diagrams) for adiabatic and isothermal processes on the same graph

 (d) repeat 2c to plot \(T(V) \) (\(T-V \) diagrams)

3. Use Maxwell relations to prove important thermodynamic formula:

\[
\left(\frac{\partial E}{\partial V} \right)_T + p(V, T) = T \left(\frac{\partial p}{\partial T} \right)_V ,
\]

which allows to calculate \(\left(\frac{\partial E}{\partial V} \right)_T \) from the equation of state.